Source code for sklearn_crfsuite.estimator

# -*- coding: utf-8 -*-
from __future__ import absolute_import

from six.moves import zip
from tqdm import tqdm
import pycrfsuite

from sklearn_crfsuite._fileresource import FileResource
from sklearn_crfsuite.trainer import LinePerIterationTrainer
from sklearn_crfsuite.compat import BaseEstimator


[docs]class CRF(BaseEstimator): """ python-crfsuite wrapper with interface siimlar to scikit-learn. It allows to use a familiar fit/predict interface and scikit-learn model selection utilities (cross-validation, hyperparameter optimization). Unlike pycrfsuite.Trainer / pycrfsuite.Tagger this object is picklable; on-disk files are managed automatically. Parameters ---------- algorithm : str, optional (default='lbfgs') Training algorithm. Allowed values: * ``'lbfgs'`` - Gradient descent using the L-BFGS method * ``'l2sgd'`` - Stochastic Gradient Descent with L2 regularization term * ``'ap'`` - Averaged Perceptron * ``'pa'`` - Passive Aggressive (PA) * ``'arow'`` - Adaptive Regularization Of Weight Vector (AROW) min_freq : float, optional (default=0) Cut-off threshold for occurrence frequency of a feature. CRFsuite will ignore features whose frequencies of occurrences in the training data are no greater than `min_freq`. The default is no cut-off. all_possible_states : bool, optional (default=False) Specify whether CRFsuite generates state features that do not even occur in the training data (i.e., negative state features). When True, CRFsuite generates state features that associate all of possible combinations between attributes and labels. Suppose that the numbers of attributes and labels are A and L respectively, this function will generate (A * L) features. Enabling this function may improve the labeling accuracy because the CRF model can learn the condition where an item is not predicted to its reference label. However, this function may also increase the number of features and slow down the training process drastically. This function is disabled by default. all_possible_transitions : bool, optional (default=False) Specify whether CRFsuite generates transition features that do not even occur in the training data (i.e., negative transition features). When True, CRFsuite generates transition features that associate all of possible label pairs. Suppose that the number of labels in the training data is L, this function will generate (L * L) transition features. This function is disabled by default. c1 : float, optional (default=0) The coefficient for L1 regularization. If a non-zero value is specified, CRFsuite switches to the Orthant-Wise Limited-memory Quasi-Newton (OWL-QN) method. The default value is zero (no L1 regularization). Supported training algorithms: lbfgs c2 : float, optional (default=1.0) The coefficient for L2 regularization. Supported training algorithms: l2sgd, lbfgs max_iterations : int, optional (default=None) The maximum number of iterations for optimization algorithms. Default value depends on training algorithm: * lbfgs - unlimited; * l2sgd - 1000; * ap - 100; * pa - 100; * arow - 100. num_memories : int, optional (default=6) The number of limited memories for approximating the inverse hessian matrix. Supported training algorithms: lbfgs epsilon : float, optional (default=1e-5) The epsilon parameter that determines the condition of convergence. Supported training algorithms: ap, arow, lbfgs, pa period : int, optional (default=10) The duration of iterations to test the stopping criterion. Supported training algorithms: l2sgd, lbfgs delta : float, optional (default=1e-5) The threshold for the stopping criterion; an iteration stops when the improvement of the log likelihood over the last `period` iterations is no greater than this threshold. Supported training algorithms: l2sgd, lbfgs linesearch : str, optional (default='MoreThuente') The line search algorithm used in L-BFGS updates. Allowed values: * ``'MoreThuente'`` - More and Thuente's method; * ``'Backtracking'`` - backtracking method with regular Wolfe condition; * ``'StrongBacktracking'`` - backtracking method with strong Wolfe condition. Supported training algorithms: lbfgs max_linesearch : int, optional (default=20) The maximum number of trials for the line search algorithm. Supported training algorithms: lbfgs calibration_eta : float, optional (default=0.1) The initial value of learning rate (eta) used for calibration. Supported training algorithms: l2sgd calibration_rate : float, optional (default=2.0) The rate of increase/decrease of learning rate for calibration. Supported training algorithms: l2sgd calibration_samples : int, optional (default=1000) The number of instances used for calibration. The calibration routine randomly chooses instances no larger than `calibration_samples`. Supported training algorithms: l2sgd calibration_candidates : int, optional (default=10) The number of candidates of learning rate. The calibration routine terminates after finding `calibration_samples` candidates of learning rates that can increase log-likelihood. Supported training algorithms: l2sgd calibration_max_trials : int, optional (default=20) The maximum number of trials of learning rates for calibration. The calibration routine terminates after trying `calibration_max_trials` candidate values of learning rates. Supported training algorithms: l2sgd pa_type : int, optional (default=1) The strategy for updating feature weights. Allowed values: * 0 - PA without slack variables; * 1 - PA type I; * 2 - PA type II. Supported training algorithms: pa c : float, optional (default=1) Aggressiveness parameter (used only for PA-I and PA-II). This parameter controls the influence of the slack term on the objective function. Supported training algorithms: pa error_sensitive : bool, optional (default=True) If this parameter is True, the optimization routine includes into the objective function the square root of the number of incorrect labels predicted by the model. Supported training algorithms: pa averaging : bool, optional (default=True) If this parameter is True, the optimization routine computes the average of feature weights at all updates in the training process (similarly to Averaged Perceptron). Supported training algorithms: pa variance : float, optional (default=1) The initial variance of every feature weight. The algorithm initialize a vector of feature weights as a multivariate Gaussian distribution with mean 0 and variance `variance`. Supported training algorithms: arow gamma : float, optional (default=1) The tradeoff between loss function and changes of feature weights. Supported training algorithms: arow verbose : bool, optional (default=False) Enable trainer verbose mode. model_filename : str, optional (default=None) A path to an existing CRFSuite model. This parameter allows to load and use existing crfsuite models. By default, model files are created automatically and saved in temporary locations; the preferred way to save/load CRF models is to use pickle (or its alternatives like joblib). """ def __init__(self, algorithm=None, min_freq=None, all_possible_states=None, all_possible_transitions=None, c1=None, c2=None, max_iterations=None, num_memories=None, epsilon=None, period=None, delta=None, linesearch=None, max_linesearch=None, calibration_eta=None, calibration_rate=None, calibration_samples=None, calibration_candidates=None, calibration_max_trials=None, pa_type=None, c=None, error_sensitive=None, averaging=None, variance=None, gamma=None, verbose=False, model_filename=None, keep_tempfiles=False, trainer_cls=None): self.algorithm = algorithm self.min_freq = min_freq self.all_possible_states = all_possible_states self.all_possible_transitions = all_possible_transitions self.c1 = c1 self.c2 = c2 self.max_iterations = max_iterations self.num_memories = num_memories self.epsilon = epsilon self.period = period self.delta = delta self.linesearch = linesearch self.max_linesearch = max_linesearch self.calibration_eta = calibration_eta self.calibration_rate = calibration_rate self.calibration_samples = calibration_samples self.calibration_candidates = calibration_candidates self.calibration_max_trials = calibration_max_trials self.pa_type = pa_type self.c = c self.error_sensitive = error_sensitive self.averaging = averaging self.variance = variance self.gamma = gamma self.modelfile = FileResource( filename=model_filename, keep_tempfiles=keep_tempfiles, suffix=".crfsuite", prefix="model" ) self.verbose = verbose self.trainer_cls = trainer_cls self.training_log_ = None self._tagger = None self._info_cached = None
[docs] def fit(self, X, y, X_dev=None, y_dev=None): """ Train a model. Parameters ---------- X : list of lists of dicts Feature dicts for several documents (in a python-crfsuite format). y : list of lists of strings Labels for several documents. X_dev : (optional) list of lists of dicts Feature dicts used for testing. y_dev : (optional) list of lists of strings Labels corresponding to X_dev. """ if (X_dev is None and y_dev is not None) or (X_dev is not None and y_dev is None): raise ValueError("Pass both X_dev and y_dev to use the holdout data") if self._tagger is not None: self._tagger.close() self._tagger = None self._info_cached = None self.modelfile.refresh() trainer = self._get_trainer() train_data = zip(X, y) if self.verbose: train_data = tqdm(train_data, "loading training data to CRFsuite", len(X), leave=True) for xseq, yseq in train_data: trainer.append(xseq, yseq) if self.verbose: print("") if X_dev is not None: test_data = zip(X_dev, y_dev) if self.verbose: test_data = tqdm(test_data, "loading dev data to CRFsuite", len(X_dev), leave=True) for xseq, yseq in test_data: trainer.append(xseq, yseq, 1) if self.verbose: print("") trainer.train(self.modelfile.name, holdout=-1 if X_dev is None else 1) self.training_log_ = trainer.logparser return self
[docs] def predict(self, X): """ Make a prediction. Parameters ---------- X : list of lists of dicts feature dicts in python-crfsuite format Returns ------- y : list of lists of strings predicted labels """ return list(map(self.predict_single, X))
[docs] def predict_single(self, xseq): """ Make a prediction. Parameters ---------- xseq : list of dicts feature dicts in python-crfsuite format Returns ------- y : list of strings predicted labels """ return self.tagger_.tag(xseq)
[docs] def predict_marginals(self, X): """ Make a prediction. Parameters ---------- X : list of lists of dicts feature dicts in python-crfsuite format Returns ------- y : list of lists of dicts predicted probabilities for each label at each position """ return list(map(self.predict_marginals_single, X))
[docs] def predict_marginals_single(self, xseq): """ Make a prediction. Parameters ---------- xseq : list of dicts feature dicts in python-crfsuite format Returns ------- y : list of dicts predicted probabilities for each label at each position """ labels = self.tagger_.labels() self.tagger_.set(xseq) return [ {label: self.tagger_.marginal(label, i) for label in labels} for i in range(len(xseq)) ]
[docs] def score(self, X, y): """ Return accuracy score computed for sequence items. For other metrics check :mod:`sklearn_crfsuite.metrics`. """ from sklearn_crfsuite.metrics import flat_accuracy_score y_pred = self.predict(X) return flat_accuracy_score(y, y_pred)
@property def tagger_(self): """ pycrfsuite.Tagger instance. """ if self._tagger is None: if self.modelfile.name is None: return None tagger = pycrfsuite.Tagger() tagger.open(self.modelfile.name) self._tagger = tagger self._info_cached = None return self._tagger @property def classes_(self): """ A list of class labels. """ if self.tagger_ is None: return None return self.tagger_.labels() @property def size_(self): """ Size of the CRF model, in bytes. """ if self._info is None: return None return int(self._info.header['size']) @property def num_attributes_(self): """ Number of non-zero CRF attributes. """ if self._info is None: return None return int(self._info.header['num_attrs']) @property def attributes_(self): """ A list of known attributes. """ if self._info is None: return None attrs = [None for _ in range(self.num_attributes_)] for name, value in self._info.attributes.items(): attrs[int(value)] = name return attrs @property def state_features_(self): """ Dict with state feature coefficients: ``{(attr_name, label): coef}`` """ if self._info is None: return None return self._info.state_features @property def transition_features_(self): """ Dict with transition feature coefficients: ``{(label_from, label_to): coef}`` """ if self._info is None: return None return self._info.transitions @property def _info(self): if self.tagger_ is None: return None if self._info_cached is None: self._info_cached = self.tagger_.info() return self._info_cached def _get_trainer(self): trainer_cls = self.trainer_cls or LinePerIterationTrainer params = { 'feature.minfreq': self.min_freq, 'feature.possible_states': self.all_possible_states, 'feature.possible_transitions': self.all_possible_transitions, 'c1': self.c1, 'c2': self.c2, 'max_iterations': self.max_iterations, 'num_memories': self.num_memories, 'epsilon': self.epsilon, 'period': self.period, 'delta': self.delta, 'linesearch': self.linesearch, 'max_linesearch': self.max_linesearch, 'calibration.eta': self.calibration_eta, 'calibration.rate': self.calibration_rate, 'calibration.samples': self.calibration_samples, 'calibration.candidates': self.calibration_candidates, 'calibration.max_trials': self.calibration_max_trials, 'type': self.pa_type, 'c': self.c, 'error_sensitive': self.error_sensitive, 'averaging': self.averaging, 'variance': self.variance, 'gamma': self.gamma, } params = {k: v for k, v in params.items() if v is not None} return trainer_cls( algorithm=self.algorithm, params=params, verbose=self.verbose, ) def __getstate__(self): dct = self.__dict__.copy() dct['_tagger'] = None dct['_info_cached'] = None return dct